
Integration Testing
Ensures different systems 

communicate and function together.

Performance Testing 
Evaluates system performance 
under various conditions.

Security Testing
Identifies system 
vulnerabilities and protects 
against threats.

Database Testing
Ensures data compliance with 
data privacy laws and prevents 
unauthorized access.

Functionality Testing 
Verifies if specific 
functionalities like user login.

UI Testing 
Focuses on visual elements 
and accessibility across 

multiple devices.

Usability Testing 
Assesses ease of use and ability to 

complete intended actions.

Error Guessing 
Predicts errors based on the tester's 
experience, skills, and intuition.

Exploratory Testing
Combines test design and execution, 
often used when time is limited.

Structure-Based 
Techniques 

Experience Based 
Techniques

Test Case Requirements
Design specifications, use cases, and software 

usability as the foundation.

Design the Test Case
Develop test cases for each software requirement, 

ensuring compliance with specifications.

Detailed preconditions 
and expected outcomes. 

Formal

Clear and Concise Test Cases

Simple steps, straightforward 
language, and one expected result per 

test case with each unique ID

Adherence to Testing Scope

Stick to the defined scope - Avoid 
assumptions, focusing on actual 
requirements

What are the Best 
Practices for Test Case 

Design?

Leverage AI-Powered 
Automation Tools

For efficient writing, tracking, and 
managing of test cases

Comprehensive Testing 
Coverage

Employ techniques like BVA and EP 
for maximum functionality to detect 
and fix bugs

Boundary Value Analysis (BVA) 
Identifies errors at input value boundaries, 
assuming system stability within these limits.

Equivalence Partitioning (EP)
Divides input data into classes for testing 
each class equally. 

Decision Table Testing
Uses a cause-and-effect table for 
mapping various inputs and outputs. 

State Transition Diagrams
Tests application behavior under different 
input sequences, useful for workflow-specific 
systems. 

Use Case Testing
Executes business scenarios and end-user 
functions to cover the entire system. 

Statement Coverage Testing
Executes all source code statements to 
measure executed vs. total statements.

Decision Testing Coverage 
Executes at least one branch from each decision 
point to check for unexpected behaviors.

Condition Testing 
Thoroughly tests all conditions in the 
source code for errors.

Multiple Condition Testing
Tests different condition combinations 
simultaneously for complete coverage.

All Path Testing
Identifies all executable paths and 
potential faults in the code.

Specific-Based 
Techniques 

Different Types of
Test Case Design Techniques

TEST CASE DESIGN 

A Guide for 
QA Engineers
With Examples

Test Case Design
Concise plan by Quality Analysts detailing 
testing strategy, steps, and expected 

outcomes to identify software defects and 
ensure product quality

Different Types 
of Testing

Where testing occurs without set 
conditions, discovering outcomes 

as tests progress.

Informal

How to Plan and Design
Test Cases?

Prepare the Test Environment 
Equip with required software versions and 
hardware specifications and document them 

for future reference.

Essential for efficient 
and effective 
software testing.

Ensures software 
is thoroughly 
tested, safe, and 
market-ready.

Test Case Design
is Crucial for Building 
Good-Quality 
Software

Prevents release of 
poor-quality 
software with 

defects and bugs.
Provides clear 

visibility on testing 
coverage.

01

02

03

04

05

Regular Updates with New 
Requirements

Continuously update test cases to 
reflect new requirements and for future 

understanding

FOR MORE INFO REACH OUT TO US 

accelq.com/contactus/

